Mskstart.ru

Все про Авто перевозки
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реальная сила тока в сварочных аппаратах инверторного типа

Реальная сила тока в сварочных аппаратах инверторного типа

Выбирая перед покупкой сварочный инвертор, одним из первых параметров, на который обращают внимание покупатели, является сила тока аппарата. Так уж сложилось, что украинский потребитель отдает предпочтение инструментам по-мощнее. И сегодня этим активно пользуется большинство производителей.

В этой статье мы хотим разобраться с указанной и реальной силой тока сварочных инверторов, рассказать, какие маркетинговые ходы используют производители, что бы вы отдали предпочтение именно их товару, а так же мы попробуем подсказать, какая реальная сила тока в сварочном инверторе потребуется, в зависимости от поставленных задач и условий работы сварочного аппарата.

Тип сварочного тока: постоянный (DC) или переменный (AC)

Варить постоянным (иначе прямым, по-английски – DC) током проще: легче удерживать дугу. Поэтому 99,9% современных инверторных аппаратов ММА выдают постоянный сварочный ток.

А вот среди трансформаторов раньше большинство составляли как раз аппараты переменного тока.

Переменный ток (по-английски – AC) используется для сварки цветных металлов. Но не аппаратами ММА, а аппаратами TIG. Поэтому сварочный инвертор ММА, выдающий переменный ток, — большая редкость.

Регулировка и управление сварочным током

Для регулировки сварочного тока в инверторных устройствах предусмотрен специальный электронный регулятор. Конкретные параметры выбираются потенциометром, размещенном на передней панели устройства. Его ручка вращается и постепенно устанавливается определенный уровень первоначального напряжения на входе. Здесь расположены логические элементы, созданные в виде операционных усилителей.

На выходе находится датчик тока, с которого по линии обратной связи поступает сигнал. С помощью компаратора осуществляется сравнение фактически полученного напряжения с уровнем напряжения, заданного при регулировке потенциометром.

Если уровни напряжений не совпадают, в этом случае импульс, поступающий на контроллер, изменит свою амплитуду. Одновременно изменится и скважность самих импульсов, выдаваемых контроллером. В результате, режим переключения транзисторов также изменится, оказывая тем самым влияние на величину сварочного тока. Суть данной схемы заключается в поддержании определенного равновесия и значения между фактическим и заданным током, обеспечивая его стабильное состояние.

Сварочный трансформатор — простейших тип оборудования

Для выполнения большинства сварочных работ в домашних условиях хватит понижающего сварочного трансформатора без дополнительных схем или устройств. Последовательность сборки такого агрегата следующая:

  1. Делят общее количество витков каждой обмотки на две равные половины, чтобы разместить их на обоих стержнях сердечника.
  2. Если собираете сердечник из отдельных пластин, потребуется их фиксация стяжками или в простейшей обойме. Изолировать пластины друг от друга не следует.
  3. Для катушек делают каркас из толстого электротехнического картона. Внутренний размер должен соответствовать сечению сердечника и должен позволять смещать катушку вверх или вниз.
  4. Обмотки наматывают, укладывая витки вплотную друг к другу. При необходимости делают несколько рядов из уложенного провода.
  5. Если первичная обмотка рассчитана с отводами, то на необходимом количестве витков делают петлю и выводят её, не разрезая.
  6. На нижнюю часть сердечника надевают первичную обмотку, вторичная крепится сверху.
  7. Чтобы менять силу тока для сваривания металлов или при работе с деталями, отличающимися по толщине, предусматривают обустройство простейшего регулятора. Он будет перемещать катушки со вторичной обмоткой вверх-вниз.
  8. Принцип действия такого регулятора основан на изменении воздушного зазора между обмотками. В результате меняются параметры магнитного поля, что и приводит к увеличению или уменьшению силы тока во вторичной обмотке.
  9. Регулятор представляет собой винт с резьбой, при закручивании которого и происходит подъём катушек. Для этого эти элементы соединяют между собой.
Читайте так же:
Место установки обратного клапана в системе отопления

Практически во всех случаях самодельные сварочные аппаратуры делают без корпуса. Это делают с целью предотвращения перегрева катушек, который может стать причиной выхода устройства из строя. Если сделать схему с принудительным охлаждением при помощи вентилятора, то сварочный трансформатор можно установить и в корпус. Для его изготовления выбирают устойчивые к температуре пожаробезопасные материалы, например, текстолит толщиной 1,5 – 2 см.

На поверхность корпуса выводят шпильки для подключения сварочных кабелей и сетевого провода. Возможность подключения к отводам первичной обмотки обеспечивают обустройством отдельных контактов или установкой мощного пакетного переключателя на требуемое число положений.

Подготовка аргонодугового аппарата к работе

подготовка-аргонодугового-аппарата-к-работе.jpg

Все комплектующие под рукой. Собираем все воедино:

Устанавливаем редуктор на баллон с газом

Подключаем газовый шланг к редуктору

Подключаем байонетный разъем горелки к минусовому разъему

Подключаем кабель управления к пяти-пиновому разъему на лицевой панели

Последним подключаем кабель массы к плюсовому разъему

Аппарат практически готов к работе, теперь переходим к сборке tig горелки:

1. Первым устанавливаем цангодержатель

установка-цангодержателя.jpg

2. Аккуратно вставляем в него цангу

установка-цанги.jpg

3. Прикручиваем хвостовик (не до конца)

прикручиваем-хвостовик.jpg

4. Устанавливаем керамическое сопло

установка-керамического-сопла.jpg

5. Вставляем вольфрамовый электрод

установка-вольфрамового-электрода.jpg

6. Настраиваем вылет электрода

7. Хорошенько затягиваем хвостовик.

закрепляем-хвостовик.jpg

Как только все выполнено, выставляем расход газа в зависимости от места проведения и диаметра сопла. Для сопла с диаметром 10 мм вполне подойдет расход газа равный 10 л/мин.

Внимание! Помимо самого аппарата и горелки, подготовка требуется и заготовкам. Очистив их от ржавчины, оксидной пленки и других загрязнений, вы позаботитесь о качестве сварки. Для обезжиривания можно воспользоваться ацетоном, уайт-спирпитом или другим растворителем. Присадочный пруток также зачищается наждачкой и обезжиривается.

Подробное описание работы

Принцип работы сварочного аппарата

Принцип работы сварочного аппарата.

В инверторах происходит увеличение рабочих частот с 50/60 Гц до 60 – 80 кГц (при этом увеличение рабочих частот в 4 – 6 раз позволяет снизить массу и габариты устройства в 2 – 3 раза). Повышение частоты (рабочей) происходит в контуре с мощными силовыми ключевыми транзисторами. Однако для работы транзисторов, которые на выходе дают большой ток высокой частоты, следует подать постоянный ток на вход. Постоянный ток получается после прохождения переменного тока питания (от внешней сети) выпрямителя. Электрическую схему можно условно разделить на 2 части: силовую и управления. Описание начинается с силовой части. Итак, сетевой выпрямитель представляет собой мощный диодный мост, который преобразует переменный ток в постоянный.

Для фильтрования применяются конденсаторы (часто электролитические). Фильтр необходим для сглаживания импульсов, которые происходят после прохождения диодного моста. При этом значение напряжения на выходе фильтра будет примерно в 1,4 раза выше входного напряжения диодного моста (т.е. на корень из 3). При этом важно знать то, что подобные схемы чувствительны к перепадам напряжения. При повышении входного напряжения более чем на 10% выходное повышается на 15%, этого достаточно, для того чтобы схема сгорела. Также важным конструктивным элементом выпрямителя является радиатор, который охлаждает диодный мост. Это связано с тем, что диоды и резисторы в диодном мосту сильно нагреваются под воздействием больших токов.

Помимо радиатора, на диодный мост устанавливается и термопредохранитель, в задачи которого входит немедленное отключение питания при нагреве моста более чем на 80 – 90°С.

Принципиальная электрическая схема сварочного инвертора

Принципиальная электрическая схема сварочного инвертора.

Читайте так же:
Электропроводка автомобилей для установки сигнализаций

Перед выпрямительным узлом устанавливают фильтр ЭМС (электромагнитная совместимость), он защищает сеть от высокочастотных помех и представляет собой дроссель и связку конденсаторов. Инвертор же представляет собой сборку транзисторов (часто из 2 штук) по схеме «косой мост». Коммутация постоянного напряжения в переменное происходит переключением транзисторов, частота которых может составлять десятки или сотни килогерц. Полученный на выходе ток имеет прямоугольную форму. Защиту транзисторов от сгорания обеспечивают RC-цепи, которые называют демпфирующими. Чтобы получить высокий ток на выходе инвертора, после косого моста стоит понижающий трансформатор напряжения. За ним находится мощный силовой выпрямитель, тоже диодный мост, который преобразует переменный ток в постоянный. Именно постоянный ток на выходе генерируют инверторы.

Все силовые контуры имеют охлаждение и термодатчики, которые отключают аппарат при превышении допустимого значения температуры. Чтобы обеспечить плавный запуск аппарата, используют стабилизаторы напряжения. Мягкий пуск необходим из-за того, что после зарядки конденсаторов фильтра на выходе получается большое значения тока, которое может сжечь силовые транзисторы.

Для управления силовой частью используют контроллер ШИМ. Он выдает сигналы на полевой транзистор. Выходные сигналы полевого транзистора попадают на трансформатор разделительный, у которого 2 выходные обмотки. С обмоток выходные сигналы поступают на силовые ключевые диоды (из силовой части). Также для закрытия силовых транзисторов применяется «обвязка» из 2 транзисторов. Для контроля выходного силового сигнала в системе управления применяется схема с использованием операционного усилителя, который подает входной сигнал ШИМ-контроллеру. На узел операционного усилителя, помимо выходных сигналов, заводятся сигналы со всех защитных контуров, в результате чего прекращается генерация сигнала управления и схема перестает работать (отключается).

Практика сварочного обмана. Как не проколоться при выборе аппарата. Часть 2

Данная особенность аппарата, в условиях отечественных электросетей – безусловно важна. Если инвертор не справляется с просадкой в сети до 190В – грош ему цена. Работа в гараже или на даче, в местах, где сети не могут похвастать стабильностью, — будет просто невозможна. Даже если в вашей розетке стабильно 220В, то при использовании удлинителей в 30, 50 или 100 метров — просадок всё равно не избежать.

Обман, как и в случае с дополнительными функциями, вызван страхом производителей проиграть в конкурентной борьбе. Если все продавцы техники обещают, что их инверторы работают при 160 В в розетке, почему бы не заявить, что наш «Дуб» не может работать и при 120 В, не теряя при этом в качестве шва.

Читайте так же:
Установка драйвера в автономную систему

Простейший способ проверки работоспособности инвертора при пониженном напряжении – использовать устройство под названием ЛАТР. Лабораторный АвтоТрансформатор позволяет настроить нужные параметры напряжения и посмотреть, как сварочный аппарат, подключенный через прибор, будет справляться со сваркой. Как вы понимаете, данное оборудование найдётся далеко не в каждом гараже. В лаборатории Aurora данное устройство имеется, и тесты на работу при низком напряжении в сети мы обязательно будем проводить. Так что следите за обновлениями видео на канале Aurora Online Channel.

Другая крайность – обещание продавцов сварочной техники, что при 100-110В в питающей сети аппарат будет выдавать такой же результат сварки, что и при номинальном напряжении. Это, безусловно, не правда. Сварочный ток аппарата снижается пропорционально напряжению в сети. Вопрос только при каком напряжении в розетке качество шва при работе с данным диаметром электрода станет неприемлемым. Для некоторых аппаратов это 180 В, для других 160 В.

Ещё раз повторим, работа с питающим напряжением в 220 В является гарантией идеального сплавления кромок свариваемого металла, снижение напряжения – является нештатной ситуацией и ожидать высокого качества сварочного шва в таких условиях нельзя.

Судя по рекламе – сварка при сверхнизком напряжении в питающей сети является чуть ли не главным требованием к аппарату. Между тем, хотим обратить внимание покупателей, что сварка процесс многосоставной. Кроме собственно сплавления кромок металла, нужно провести значительный объём подготовительных работ. Разрезать заготовки, зачистить место сварки, в конце концов осветить рабочее место сварщика. А падении напряжения до 140-160В ни болгарка, ни даже освещение работать не будут.

Пределы регулирования сварочного тока

Эта характеристика позволяет понять, как сварочный аппарат справится с работой с разными диаметрами электродов. Чем тоньше свариваемый металл, тем меньше должен быть сварочный ток, и соответственно, диаметр выбранного электрода. Учитывая, что минимальный диаметр электродов в свободной продаже составляет 1.6 мм, ток для них должен быть в районе 40-50А. Для работы с большими толщинами заготовок, ток, напротив, должен быть высоким, для электрода 4мм, — 140-200А.

Стоит напомнить, что ток сварки подбирается в зависимости от диаметра электрода. Для приближённых расчётов используется формула:

Значения коэффициента k – можно узнать из таблицы:

Кратность регулирования сварочного тока вычисляется делением максимального сварочного тока на минимальный.

Iсв. max/Iсв. Min.

Для простейших бытовых ММА аппаратов данное соотношение должно быть не менее 2, для профессиональной техники и производственного оборудования — от 3 до 8.

Обман в данном случае может сводиться к преувеличению диапазона регулировок. Если аппарат выдаёт ток от 80 до 120А – работать с электродами тоньше 2.5 и толще 4 мм – будет сложно.

Устойчивость и стабильность процесса сварки

Любитель, который сталкивается со сваркой впервые, думает, что раз электрод «искрит» – значит аппарат работает. Это неверно. Если аппарат зажигает дугу, это совсем не значит, что процесс сплавления кромок свариваемого металла идёт так, как нужно.

Бывает, что аппарат даже выдаёт заявленные токовые характеристики, а сварка всё равно не идёт. И тут стоит обратить внимание на ещё один принципиальный момент – устойчивость системы: «Источник питания-Дуга». Для того чтобы процесс сварки был стабильным должны выполняться следующие условия:

Читайте так же:
Регулировка фар своими руками мицубиси галант

Графически эти равенства определяются точкой пересечения статической Вольт-амперной характеристики дуги (СВАХ дуги) и статической внешней характеристики источника питания (Внешняя характеристика ИП).

точкой пересечения статической Вольт-амперной характеристики дуги (СВАХ дуги) и статической внешней характеристики источника питания (Внешняя характеристика ИП)

Все эти ВАХ и СВАХ для обывателя – тёмный лес. А значит жулики будут этим беззастенчиво пользоваться. К примеру, есть два аппарата с одинаковыми токовыми характеристиками: EWM PICO 162 и наш, уже знаменитый «Дуб». Допустим оба аппарата выдают заявленный номинальный ток в 150А, при этом сварка PICO – просто песня. Аппарат не варит а шепчет. В то время как у владельца «ДУБа» — проблема… очень много брызг, дуга не стабильна и то обрывается, то прожигает дыры в заготовках. В чём может быть дело? Да как раз, в форме внешней характеристики источника. Так что соберитесь, и постарайтесь вникнуть в детали, о которых пойдёт речь далее:

СВАХ дуги представляет собой зависимость напряжения дуги от её тока, т.е. U дуги= ʄ (I дуги) (Напряжение дуги – есть функция от тока дуги).

Т.к. дуга является нелинейным элементом электрической цепи, то и СВАХ дуги будет иметь криволинейный характер и состоять из 3-х характерных участков: падающего, жёсткого и возрастающего.

При разных способах сварки СВАХ дуги реализуется только на некоторых участках. Для ММА сварки это падающий и жёсткий:

4.jpg

5.jpg

Положение СВАХ дуги зависит от длинны дуги

6.jpg

Удаляя электрод от детали сварщик удлиняет дугу напряжение при этом растёт (L1), приближая электрод к поверхности дуга уменьшается, а вместе с ней падает и напряжение (L3).

Внешняя характеристика источника питания

Внешняя характеристика источника питания представляет собой зависимость напряжения на внешних зажимах от тока, т.е. U источника = ʄ (I дуги). (Напряжение на внешних зажимах источника есть функция от тока дуги)

Внешняя характеристика может быть падающей (1), Жёсткой (2), или возрастающей (3).

7.jpg

Для каждого способа сварки, для того, чтобы добиться устойчивости процесса – необходим источник питания с определённой внешней характеристикой. Для ММА сварки источник питания в общем виде должен иметь падающую или круто падающую внешнюю характеристику:

8.jpg

Сварщик не может удержать дуговой промежуток неизменным. Длинна дуги во время сварки то увеличивается, то уменьшается, соответственно меняется и сила тока. При падающей внешней характеристике изменение длинны дуги сопровождается незначительными изменениями сварочного тока. Это значит, что размер сварочной ванны и геометрические параметры шва остаются постоянными. Чем круче падение графика внешней характеристики источника питания — тем меньше изменения тока. Сварщик может удлинять дугу не опасаясь её обрыва, или укорачивать её без опасения прожечь заготовку.

Давайте остановимся на падающей внешней характеристике подробнее, почему важна именно такая форма графика, и чем чреват обман? Предположим, что мы решили использовать для сварки аппарат с полого падающей внешней характеристикой, которой, кстати, часто грешат производители бюджетного сварочного оборудования. Некоторые производители в погоне за высокими токами, вместо номинального сварочного тока указывают ток короткого замыкания. При разработке дешёвого аппарата инженеры не мудрят, а создают источник с такой вот внешней характеристикой:

Читайте так же:
Установка системы глонасс отзывы

9.jpg

Ток короткого замыкания здесь, допустим, 200А, которые, недобросовестные продавцы обозначают как номинальный сварочный ток. Однако из данного графика видно, напряжение дуги при токе в 200А – равно нулю, а значит сварочный процесс будет невозможен. Для нормального сплавления кромок металла, напряжение 200-амперного источника должно быть в районе 28 В (откуда появилось это значение мы расскажем чуть позже, когда будем говорить об условной рабочей нагрузке), а значит максимальный сварочный ток приведённого на графике инвертора будет значительно ниже заявленного производителем значения.

Чем ещё плоха данная внешняя характеристика для аппаратов ММА?

11.jpg

При изменении длинны дуги – будет серьёзно меняться и выдаваемый ток аппарата. Как видите диапазон изменения тока при полого падающей характеристике – очень велик, а значит о стабильности сварочного процесса говорить не приходится: аппарат с пологой ВАХ будет то прожигать металл, то не проваривать его в зависимости от положения электрода относительно сварочной ванны. Так же можно сказать, что для сварки покрытым электродом не подходят аппараты с жёсткой или возрастающей внешней характеристикой. Добиться стабильного процесса сварки при таких условиях будет невозможно.

1.jpg

В случае с крутопадающей внешней характеристикой Источника питания диапазон изменения тока будет незначителен, а значит процесс сплавления металла – гораздо стабильнее:

12.jpg

Именно поэтому, для ММА сварки так принципиальна крутизна падения графика. Чем круче – тем стабильнее процесс.

У современных источников питания для ММА сварки внешняя характеристика может быть комбинированной и состоять из 4-х участков:

13.jpg

Такая характеристика обеспечивает соответствие инвертора специфическим требованиям к каждой стадии сварочного процесса.

1 участок – Высоковольтной подпитки

Формируется специальной цепью с напряжением холостого хода 80-100В и Током короткого замыкания 10-50А, для обеспечения стабильности сварочного процесса при работе на малых токах.

14.jpg

2 участок — пологопадающий или жёсткий

Формируется основной силовой цепью с напряжением холостого хода 40-60В, с наклоном 0-0.05 В/А.

15.jpg

Эти параметры выбирают на основе компромисса:

  • Требования экономичности (чем ниже напряжение холостого хода, тем дешевле источник питания)
  • Получение удовлетворительных сварочных свойств: чем выше напряжение холостого хода, тем выше надёжность зажигания и эластичность дуги.

3 участок — крутопадающий (рабочий режим)

Обеспечивает поддержание устойчивого дугового разряда при установленном значении сварочного тока. Наклон участка можно изменять при проектировании источника – чем он круче, тем выше стабильность тока при изменении длинны дуги. Именно падающая форма данного участка, как уже было сказано, — гарантирует постоянство глубины проплавления и эластичность дуги.

16.jpg

4 участок – Форсирование дуги

О данном отрезке мы говорили выше, когда разбирались с функцией Arc Force. Некоторые источники имеют регулировку форсажа, что позволяет изменять жёсткость дуги. Уменьшение форсирования снижает разбрызгивание, увеличение – позволяет добиться увеличения глубины проплавления и снижение возможности залипания электрода.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector