Центробежные компрессорные установки. Защита от помпажа
Центробежные компрессорные установки. Защита от помпажа
Компрессорные установки в промышленности используются во многих технологических операциях. Сжатый воздух получают разными типами компрессорных установок. От роторного типа, до вихревых турбомашин. Центробежные компрессорные установки типа К-250 имеют широкое распространение в промышленности. Но у всех типов компрессоров есть критический режим работы – помпаж.
Введение
Динамическое сжатие газа в центробежных компрессорах достигается увеличением политропного напора потока газа. Такой процесс описывается газодинамическими характеристиками компрессора, которые представлены на двухмерном графике кривой показывающей рабочие точки компрессора.
На режимах работы компрессора близких к расчетной точке (точка А), поток газа согласуется с формой элементов проточной части. При существенном отклонении режимов в потоке возникают различные вторичные течения, возникают сложные физические процессы.
Пересечение линии помпажа (точка В) сопровождается высокочастотными колебаниями, при этом происходит скачкообразное изменение расхода от максимального значения до отрицательного (реверсирование потока).
ПОМПАЖ – это нестационарный, автоколебательный режим работы компрессора с частотой колебаний давления и расхода порядка 0,5 – 2,0 Гц в зависимости от аккумулирующих характеристик сети.
Помпаж сопровождается быстрым ростом температуры газа, появлением сильных толчков и вибрации, что может привести к разрушению компрессора. Помпаж – недопустимое явление для компрессоров.
Как защититься от помпажа?
Современные системы управления компрессорными установками в своем арсенале имеют много различных алгоритмов для защиты компрессора от помпажных явлений. Математические модели описывающие процессы, протекающие при сжатии воздуха, заложенные в системы управления компрессорными установками позволяют осуществить управление исполнительными механизмами по кривой помпажа КУ (компрессорной установки), для уменьшения эксплуатационных затрат, без ущерба механической части КУ. В процессе эксплуатации механические характеристики КУ меняются не в лучшую сторону. Мат. Модель может быть адаптивна к новым характеристикам КУ, но она сложна в реализации. Поэтому на стадии пусковой наладке, настраивают мат. модель под конкретную КУ. Но само детектирование начала помпажных явлений или установившегося помпажа имеет место быть в независимости от применяемой системы управления КУ. Поэтому данный вид аварийной остановки КУ присутствует в любой САУ (системы автоматического управления) КУ. Для детектирования помпажных явлений используется много входных данных: изменение давления на выходе, температуры и т.д.
Детектор помпажа КУ
В данной статье я расскажу, как детектировать помпажное явление в КУ, применяя простой программный алгоритм’ простую программную реализацию несложного алгоритма и единственный сигнал, по которому будет происходить оценка данного явления.
Рассмотрим КУ К-250.
Центробежный, многоступенчатый компрессор, имеющий промежуточные отводы к газоохладителям.
В рабочем режиме, когда КУ вышел на номинальные характеристики, ток статора имеет практически номинальное значение, если двигатель подобран без запаса по мощности. Во время помпажных явлений, давление на выходе повышается до максимально возможного, для данного типа КУ, после чего происходит перетекание сжатого воздуха под воздействием давление из ступеней высшего порядка к низшим. В момент перетекания нагрузка на валу двигателя резко уменьшается, возникает механический удар. Этот момент необходимо детектировать на ранней стадии, чтобы предотвратить механические повреждения КУ. Почему возникают эти помпажные явления, останутся за рамками этой статьи.
Рассмотрим график тока статора в рабочем режиме.
Во время начавшегося помпажа, когда сжатый воздух перетекает из высшей ступени в низшую, происходит «подталкивание» электродвигателя, в этот момент происходит всплеск действующего значения тока, а затем в связи с уменьшением нагрузки происходит провал тока, затем набор рабочего тока, сжатие продолжается и цикл повторяется вновь, вплоть до исчезновения помпажа. График такого режима.
На данном графике колебания происходят с частой в 1 Герц. Такое поведение тока статора, прямое следствие начавшегося помпажа КУ. Как программно детектировать?
Программная реализация противопомпажной защиты
В рабочем режиме, ток меняется плавно и в небольших пределах. В момент начинающегося или уже случившегося помпажа, колебания имеют большую амплитуду и частоту. Значит обычным, цифровым ФНЧ, можно детектировать данную аварийную ситуацию.
К примеру, раз в 100 мс, будем вызывать функцию фильтра, формула которого выглядит следующим образом:
Где 0<А<1 коэффициент фильтра. Чем меньше А, тем слабее фильтр.
Посмотрим на график такого фильтра.
Теперь, если у нас начнется помпаж, то посмотрим, как себя поведет фильтр.
а графике видно, что ток пересекает фильтр несколько раз в режиме помпажа, но такой детектор будет иметь ложные срабатывания в рабочем режиме. Следовательно, необходимо отфильтрованный сигнал сместить вверх и вниз на значение, которое соответствует амплитуде помпажа. На пример на 5 А в ту и другую сторону.
Рабочий режим находится в диапазоне, что говорит о нормальном режиме работы, а помпаж уже пересекает наши границы, и можно смело детектировать помпаж на 7-8 пересечении и аварийно отключить КУ. Можно пойти еще дальше и на первом же пересечении попробовать остановить помпажное состояние, управляя исполнительными механизмами дроссельной заслонки и помпажного клапана.
На примере ПЛК Siemens S7-300 я опишу данную функцию.
В данном файле архиве, проект STEP7, для ЦПУ 314-2PN/DP. В нем показана основная мысль детектирования помпажа. Код не оптимизирован и не доведен до ума.
Видео, демонстрирующее работу защиты от помпажа, смотри ниже.
Наряду с программными реализациями по глубокому дросселированию КУ по границе помпажа, необходимо иметь аварийную отработку уже начинающего или начавшегося помпажа в КУ.
Также обратите внимание, что поток охлаждающего воздуха правильно направлен при использовании искусственной аэрации. Искусственная аэрация подчиняется тем же правилам, что и естественная: вход холодного воздуха должен располагаться внизу, около пола, выход тёплого воздуха – вблизи потолка помещения, в котором расположен компрессор. В этом случае, также, компрессор располагается в пределах воображаемой линии движения потока воздуха. При температурах ниже +2°С отверстие для входа аэрационного воздуха должно иметь возможность закрываться заслонкой.
Герметизация [ править | править код ]
Поскольку для нормальной работы низкотемпературных холодильных машин недопустимо присутствие даже малейших следов воды в хладагенте, а рабочие давления, производимые компрессором, могут достигать 20 кгс/см² для фреонов и даже 30-35 кгс/см² для аммиака, важнейшим требованием, предъявляемым к холодильным компрессорам является герметичность. Для обеспечения её холодильный компрессор бытовых холодильных установок (таких как кондиционеры воздуха и холодильники) вместе с электродвигателем заключают в герметичный кожух, выводя наружу только герметизированные электрические выводы. Для смазки холодильных компрессоров применяются только специальные холодильные масла.
Автомобильные холодильные компрессоры для кондиционирования воздуха чаще всего делаются с приводом от общего с генератором ремня, шкив такого компрессора имеет в себе электрическую муфту позволяющую отключать компрессор когда он не нужен. Обычно используется схема с косой шайбой и 5-7 поршнями. Для грузовиков и автобусов, имеющих мощные генераторы тока, также иногда делается электрический привод вращения вала от отдельного электродвигателя. Передвижные рефрижераторы могут иметь привод компрессора и от отдельного собственного ДВС.
Холодильные компрессоры
Холодильные компрессоры обеспечивают циркуляцию хладагента в системе и, в отличие от газовых компрессоров, самостоятельно вне холодильных машин не применяются.
Отличия условий работы компрессоров в составе холодильных машин от условий работы компрессорных машин общего назначения:
работают в широком диапазоне изменения давлений всасывания и нагнетания;
часто хладагенты растворяют масла и условия смазки компрессора ухудшаются;
всасываемый пар имеет низкую температуру и часто несет капли жидкости;
может наблюдаться конденсация хладагента в цилиндре (при интенсивном охлаждении);
часто хладагенты очень текучи и обладают высокой проницаемостью;
к холодильным компрессорам предъявляются повышенные требования: большая надежность, значительный моторесурс, высокий КПД и т.д.
В холодильной технике используются компрессоры нескольких типов объемного типа (поршневые, винтовые, спиральные) и кинетического действия (турбокомпрессоры, эжекторы).
Поршневые компрессоры
Поршневые компрессоры для холодильных машин, работающие на хладонах и аммиаке, с электрической мощностью больше 5 кВт, выпускаются в соответствии с ГОСТ 6492-84. Этим ГОСТом предусмотрены ограничения на степень повышения давления (Рк/Р0<9), на разность давлений (Рк-Р0<1,4 МПа), на температуру нагнетания (^<145 °С) и на поршневые усилия.
При выборе компрессоров необходимо учитывать указанные факторы.
Наиболее часто в холодильных машинах используются:
А) бескрейцкопфные аммиачные и фреоновые компрессоры. Это вертикальные или угловые (V- и W-образные) в блок-картерном исполнении (для прочности, жесткости и удобства компоновки) машины простого действия. Обычно это прямоточные компрессоры, с ложными крышками цилиндров (для защиты от гидроударов).
Цилиндры охлаждаемые. У аммиачных компрессоров – рубашечное охлаждение, водой. У фреоновых компрессоров — воздушное, с оребрением цилиндров.
Достоинства:
- машины быстроходные, легкие и компактные;
- незаменимы при малых производительностях.
- сложный доступ к подшипникам, смазочной системе и др. узлам, расположенным в блоккартере.
Б) крейцкопфные компрессоры с горизонтальным оппозитным расположением цилиндров. Это машины двойного действия с повышенной производительностью, одно- и двухступенчатые, с взаимно противоположным движением поршней. Предназначены для работы на аммиаке, пропане, пропилене. Охлаждение — водяное.
- чувствительность к гидроударам.
Машины этого типа успешно вытесняются винтовыми компрессорами.
Винтовые компрессоры
Винтовые компрессоры широко применяются в холодильных машинах. Это одно- или двухроторные машины объемного действия с постоянной геометрической степенью сжатия. Они подразделяются на два типа: сухие и маслозаполненные. В маслозаполненных компрессорах в рабочую полость впрыскивается значительное количество масла для уплотнения зазоров, смазки и охлаждения. Впрыск масла позволяет существенно снизить уровень шума.
Достоинства:—
быстроходность, малая масса и габариты (габариты в 2-10 раз, а масс 10-100 раз меньше, чем у поршневых компрессоров той же производительности), полная уравновешенность, практически беспульсационная подача, отсутствие вибраций;
широкий диапазон плавного регулирования производительности (от 10 до 100%), работа на переменных режимах с незначительным изменением КПД;
отсутствие помпажного режима;
возможность работы во влажной среде, так как эти машины не боятся гидроударов;
высокая надежность и значительный моторесурс (нет клапанов и трущихся деталей);
простота обслуживания, автоматизации и дистанционного управления.
высокий уровень шума;
необходимость охлаждения при средних и высоких степенях повышения давления.
Регулирование холодопроизводительности винтовых компрессоров осуществляется передвижением золотника, перемещаемого вдоль оси роторов. Перемещением его в сторону нагнетания уменьшается рабочая длина винта а, следовательно, производительность. При запуске компрессор полностью разгружается.
Спиральные компрессоры
Данный тип оборудования чаще всего используется для сжимания безмасляных газов. Благодаря своим конструктивным особенностям они имеют некоторые преимущества перед другими типами компрессорного оборудования:
- снижение нагрузки на электродвигатель, особенно в момент его пуска;
- проходя через цилиндрический корпус, хладагент эффективно охлаждает двигатель;
- обеспечивается равномерность подачи газа;
- отличаются высоким уровнем надежности;
- имеют сниженный уровень шумности.
Недостатки
Наряду с целым рядом преимуществ спиральных компрессоров, они имеют и недостатки, которые мешают внедрять их более активно. Среди наиболее серьезных можно отметить два:
- сложные технология изготовления
- относительно невысокая производительность.
При этом нужно отметить, что на рынке сегодня предлагается все большее количество спиральных компрессоров, при постоянном повышении их качества. Стоит ожидать, что в скором времени этот тип оборудования начнет вытеснять другие менее надежные системы.
Турбокомпрессоры
Это, как правило, центробежные компрессоры с объемной производительностью от 50-60 м /мин и более. Они используются для крупных холодильных станций и установок. Число секций — 2-3, ступеней от 3-х до 7-ми, с патрубками между секциями для реализации промежуточного охлаждения и ступенчатого дросселирования.
Для регулирования производительности компрессора используется входной регулирующий (направляющий) аппарат (ВРА или ВНА). Путем закручивания потока на входе в рабочее колесо можно менять производительность в пределах от 100 до 50 % номинального значения.
Это высокооборотные машины («=13000-15000 об/мин), поэтому при электроприводе необходимы редукторы.
Преимущества и недостатки холодильных турбокомпрессоров такие же как и у воздушных нагнетателей такого типа.
Герметичные, полугерметичные и открытые компрессора
Холодильные компрессоры различаются по своей конструкции на герметичные, полугерметичные и открытые устройства.
Герметичные холодильные компрессоры
Герметичные компрессоры располагаются в одном корпусе с электродвигателем, который охлаждается непосредственно хладагентом. К их преимуществам можно отнести:
- экономичность;
- компактность;
- универсальность.
Герметичные холодильные компрессоры обладают сравнительно небольшой мощностью – до 35 кВт.
Полугерметичные холодильные компрессоры
Полугерметичные компрессоры применяются в установках, где требуется установить компактное оборудование большой мощности. Данный тип оборудования может развивать мощность до 350 кВт, чаще всего встречаются поршневые и винтовые модели компрессоров. Рабочая часть и электродвигатель устройства этого типа находятся в разборном корпусе, что делает компрессор более ремонтопригодным. Его можно разобрать, снять электродвигатель и заменить нужные детали. Регулировка режима работы может осуществляться закрытием части всасывающих клапанов. К другим преимуществам данного оборудования можно отнести:
- высокую мощность;
- компактность;
- удобство обслуживания.
Открытые холодильные компрессора
Главной особенностью открытого компрессора является наличие внешнего двигателя. Это достаточно громоздкая конструкция, но она имеет множество преимуществ. Чаще всего открытые компрессоры используются в крупных промышленных установках, где они наиболее эффективны. Вал, приводящий в движение механику компрессора, выходит за его пределы, поэтому требует специального уплотнения. Как правило, используется сальник или вращающееся уплотнение. Компрессор может вращаться со скоростью двигателя или, при использовании передачи (чаще всего клино-ременной) его скорость вращения можно увеличить, подобрав шкив нужного диаметра. Среди преимуществ данного типа компрессоров можно отметить:
Виды объемных компрессоров
Компрессорное оборудование объемного типа подразделяется на 3 группы:
- мембранные;
- поршневые;
- роторные.
Мембранные
Имеют в рабочей камере эластичную мембрану, как правило, полимерную. Благодаря возвратно-поступательным движениям поршня мембрана выгибается в разные стороны. В результате движений мембраны объем рабочей камеры меняется. Клапаны в зависимости от положения мембраны либо впускают воздух в камеру, либо выпускают.
Приходить в движение мембрана может от пневматического, мембранно-поршневого, электрического или механического привода.
Важно! В мембранных аппаратах воздух или газ в процессе перемещения через рабочую камеру не контактирует с другими узлами агрегата (кроме мембраны и корпуса). Благодаря этому на выходе получают газ высокой степени чистоты.
Поршневые
Благодаря наличию кривошипно-шатунного механизма поршень совершает возвратно-поступательные движения в рабочей камере, отчего ее объем то уменьшается, то увеличивается.
Поршневые компрессоры имеют установленные на рабочей камере односторонние клапаны, перекрывающие движение воздуха в обратном направлении. Несмотря на хорошую производительность, поршневые аппараты имеют и недостатки: достаточно высокий уровень шума и заметная вибрация.
Роторные
В роторных компрессорах сжатие воздуха происходит вращающимися элементами — роторами. Каждый элемент в зависимости длины и шага винта имеет постоянное значение сжатия, которое также зависит и от формы отверстия для выхода газа.
В таких компрессорах клапаны не устанавливаются. Также конструкция агрегата не содержит узлов, способных вызвать разбалансировку. Благодаря этому он может работать с высокой скоростью вращения ротора. При такой конструкции аппарата величина потока газа достигает высоких значений при небольших габаритах самого компрессора.
Роторные компрессоры подразделяются на несколько подвидов.
Безмасляные
Имеют ассиметричный профиль винта, повышающий КПД агрегата благодаря уменьшению утечек при сжатии газа. Для обеспечения синхронного встречного вращения роторов применяют внешнюю зубчатую передачу. Во время работы роторы не соприкасаются, и смазка им не требуется, поэтому выходящий из агрегата воздух не имеет никаких примесей. Для уменьшения внутренних утечек детали агрегата и корпус изготавливаются с высокой точностью. Также безмасляные аппараты могут быть многоступенчатыми, чтобы убрать разность температур воздуха на входе и выходе аппарата, которая ограничивает повышение давления.
Винтовые
Состоят из одного или нескольких винтов, которые находятся в зацеплении, установленных в герметичном корпусе.
Рабочее пространство создается между корпусом и винтами при их вращении. Данный вид компрессоров отличается хорошей производительностью и беспрерывной подачей воздуха. Для снижения трения между входящими в зацеп винтами, которое увеличивает износ деталей, применяется смазка. Если требуется получить сжатый воздух (газ) без примесей смазочных материалов, то применяются безмасляные винтовые аппараты. В последних, чтобы уменьшить силу трения, подвижные детали изготавливаются из антифрикционных материалов.
Зубчатые
Данные компрессоры еще называют шестеренчатыми, поскольку их главными деталями являются шестерни. Они при работе вращаются в противоположных направлениях, создавая между зубьями и стенками корпуса рабочую камеру.
При вхождении зубьев в зацепление на стороне выходного отверстия агрегата происходит уменьшение объема камеры, вследствие чего воздух под давлением выходит через патрубок. Компрессоры данного типа нашли широкое применение в ситуациях, когда не требуется подача воздуха или газа под высоким давлением.
Спиральные
Это разновидность безмасляных компрессоров роторного типа. Спиральные аппараты также сжимают газ в объеме, который уменьшается постепенно.
Главными элементами данного аппарата являются спирали. Одна спираль закреплена неподвижно в копрусе устройства. Другая подвижная, соединена с приводом. Сдвиг по фазе между спиралями равняется 180°, благодаря чему происходит образование воздушных полостей с изменяемым объемом.
Роторно-пластинчатые
Пластинчатый компрессор имеет ротор с прорезанными пазами. В них вставлено определенное количество подвижных пластин. Как видно из рисунка, приведенного ниже, ось ротора с осью корпуса не совпадает.
Пластины при вращении ротора перемещаются центробежной силой от его центра к периферии и прижимаются к внутренней поверхности корпуса. В результате происходит непрерывное создание рабочих камер, ограниченных соседними пластинами и корпусами ротора и аппарата. За счет смещенных осей изменяется объем рабочих камер.
Жидкостно-кольцевые
В данных агрегатах используюется вспомогательная жидкость. В статически закрепленном корпусе аппарата устанавливается ротор с пластинами.
Конструкционные особенности данного аппарата – это смещенные оси ротора и корпуса относительно друг друга. В корпус заливается жидкость, которая принимает форму кольца, прижимаясь к стенкам аппарата вследствие отбрасывания ее лопастями ротора. При этом происходит ограничение рабочего пространства, наполненного газом, между жидкостным кольцом, корпусом и лопатками ротора. Объем рабочих камер изменяется посредством вращающегося ротора со смещенной осью.
Важно! Чтобы перекачиваемый газ не уносил с собой частички жидкости, в жидкостно-кольцевых аппаратах устанавливают узел сепарации, отсекающий влагу из воздуха. Также на устройствах данного типа устанавливается система, обеспечивающая подпитку рабочей камеры вспомогательной жидкостью.
Компрессор поршневой
Поршневые компрессоры – агрегаты для сжатия воздушного атмосферного потока, работа которых осуществляется по принципу объемного сжатия. Главным функциональным элементом выступает компрессорная головка, повышение параметров давления внутри компрессорной камеры осуществляется за счет изменения объема рабочего давления. Схема работы поршневых агрегатов включает следующие этапы:
- Атмосферный воздушный поток поступает в устройство через всасывающий клапан и фильтр;
- При чередовании движений поршневой группы происходит нагнетание рабочего давления, которое проталкивает воздух в камеру сжатия;
- При достижении граничной отметки рабочего давления открывается нагнетающий клапан, и воздух из камеры подается на выход, пройдя этапы охлаждения и сепарации.
Компрессор поршневой
По способу соединения поршневого блока с электродвигателем модификации устройств бывают:
- С прямой передачей;
- С ременным типом привода.
Методика расчета при выборе компрессора
1. Расчет потребления воздуха:
G = G1×k1 + G2×k2 + … + Gn×kn,
G – общее потребление воздуха, л/мин;
G1, Q2, … Gn – потребление воздуха каждой единицей пневмооборудования, л/мин;
k1, k2, … kn – коэффициенты использования оборудования, показывающие, какую долю времени используется инструмент. К примеру, если инструмент работает 30 мин каждый час, то его коэффициент составит 30/60 = 0,5.
Предположим, на производстве имеется три потребителя воздуха: ударный гайковерт (расход воздуха 450 л/мин, рабочее давление 6,5 бар, коэффициент использования 0,2), шлифовальная машинка (расход воздуха 430 л/мин, рабочее давление 6,5 бар, коэффициент использования 0,6) и шуруповерт (расход воздуха 170 л/мин, рабочее давление 6 бар, коэффициент использования 0,3). Тогда общая потребность в сжатом воздухе составит:
G = 450×0,2+430×0,6+350×0,3 = 90 + 258 + 18 = 453 л/мин.
Иногда целесообразно иметь некоторый запас производительности, чтобы в дальнейшем при расширении производства и увеличении числа потребителей воздуха не пришлось менять компрессор. Увеличим полученный расход на 15%:
G1 = 453×1,15 = 520,95 л/мин.
2. Далее учитывается вероятность одновременной работы всего оборудования. Она определяется коэффициентом синхронности работы оборудования. Если вы используете один инструмент, то коэффициент синхронности равен 1, если 10 – то 0,71. Остальные значения занимают промежуточное значение. Для трех потребителей коэффициент синхронности составит 0,9. Таким образом:
G2 = 520,95×0,9 = 469 л/мин.
3. Значение производительности компрессоров отличается на входе и на выходе. Зачастую производители указывают входную величину, которая, естественно, больше реальной. Чтобы ее рассчитать и не ошибиться в выборе компрессора, необходимо использовать следующую формулу:
b – коэффициент запаса производительности, зависящий от класса компрессора и максимального давления.
Максимальное давление, требуемое потребителями, составляет 6,5 бар. К этому значению нужно прибавить падение давления на пути движения сжатого воздуха. Предположим, что общее падение давления на осушителе, фильтрах и трубопроводе не превышает 1,5 бар. Тогда подходит компрессор с максимальным рабочим давлением 8 бар. При этом давлении для профессионального класса компрессора коэффициент запаса производительности составит 1,5. Поэтому входная производительность компрессора составит:
Gвх = 469 ×1,5 = 703,5 л/мин.
Таблица для определения коэффициента запаса производительности b
4. Производим расчет объема ресивера по формуле:
V(л) = (Q*t*Кпр) / (60*ΔP),
ΔP – диапазон регулировки давления в ресивере (мин. значение – 2 бар);
t – допустимое время (сек), за которое давление в ресивере падает от максимального до минимального (рекомендуется от 30 сек и более в зависимости от требований к пневмосети);
Кпр – коэффициент производительности компрессорной головки (для одноступенчатых – 0,65, для двухступенчатых – 0,75).
Разница между минимальным и максимальным давление в ресивере составляет 2 бар, то есть при достижении давления в ресивере 6 бар компрессор включается в работу. При этом время, за которое давление в ресивере падает от максимального до минимального (время «отдыха» компрессора), принимаем равным 40 с, чтобы компрессор не перегревался и не работал на износ:
V(л) = (469*40*0,65) / (60×2) = 102 л.
Это минимальный объем рекомендуемого воздушного ресивера.
5. Для определения диаметра трубопровода учитываем потери от каждого «местного сопротивления» (фитинги, краны и т. д.) методом эквивалентной длины трубы. Иными словами, существуют зависимости, показывающие, сколько метров необходимо добавить к длине прямолинейного участка трубопровода при установке каждого фитинга, крана и т. д. Сначала по длине трубопровода и расходу воздуха из специальных таблиц выбирается первоначальный диаметр трубы. Далее производится подсчет всех фитингов и при помощи таблицы перевода определяется, насколько необходимо увеличить длину основного трубопровода. На последнем этапе повторно, с использованием уже новой длины проверяем, подходит ли выбранный нами диаметр. Если нет – следует увеличить.
Если у вас уже есть компрессор, который не обеспечивает ваши потребности, то:
1. Экспериментально определяем наименьшее значение t – время (сек), за которое давление в ресивере падает от максимального до минимального (время между остановкой и включением компрессора);
2. Рассчитываем реальное воздухопотребление по формуле:
V – объем ресивера (л);
ΔP – диапазон регулировки давления в ресивере (мин. значение – 2 бар);
Кпр – коэффициент производительности компрессорной головки (для одноступенчатых – 0,65, для двухступенчатых – 0,75).
3. Рассчитываем теоретическое воздухопотребление для всех потребителей (пользуемся первой формулой) и сравниваем теорию и практику: если вам необходимо больше сжатого воздуха, то подбираем новый компрессор или ресивер.