Mskstart.ru

Все про Авто перевозки
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Соматическая нервная система; определение, функции и примеры

Соматическая нервная система – определение, функции и примеры

Соматический нервная система (SoNS), также известный как добровольная нервная система, является частью периферическая нервная система (ПНС). Он состоит из нейронов, которые связаны со скелетом или поперечно-полосатой мускул волокна и влияют на произвольные движения тела.

Периферическая нервная система состоит из всех нейронов, которые существуют вне головной мозг и спинной мозг. Он выступает в качестве посредника между Центральная нервная система (ЦНС) и мышцы, кожа и органы чувств. Нервы ПНС посылают электрохимические сигналы назад и вперед между ЦНС и остальной частью тела. Большая часть ПНС состоит из 12 пар черепных нервов и 31 пары спинных нервов. Некоторые из нейронов в этих нервах имеют сенсорную функцию, а другие имеют моторную функцию. Моторные нейроны, которые иннервируют поперечно-полосатые мышцы, образуют соматическую нервную систему.

Содержание

Нейрофизиология рассматривает нервную систему как часть живой системы, которая специализируется на передаче, анализе и синтезе информации, а нейропсихология — как материальный субстрат сложных форм психической деятельности, формирующихся на основе объединения различных отделов мозга в функциональные системы.

Нервная система: функции, отделы, принцип работы

Нервная система (НС) — это совокупность анатомически и функционально взаимосвязанных нервных структур, обеспечивающих регуляцию и координацию деятельности организма человека и его взаимодействие с окружающей средой.

Структурной единицей НС является клетка с отростком (нейрон, или нейроцит). Нервная система — это совокупность нейронов, которые контактируют между собой посредством синапса.

Проверь себя 1. Основу мышления и речи составляет работа:

1. Основу мышления и речи составляет работа:
А. Дыхательной системы Б. Нервной системы B. Кровеносной системы
2. Белое вещество мозга образовано:
А. Аксонами Б. Дендритами В. Телами нейронов
3. Импульсы от тела нейронов проходят по:
A. Аксонам Б. Дендритам B. Рецепторным окончаниям
4. Преобразование внешних раздражителей в нервные импульсы происходит в:
А. Головном мозге Б. Рецепторах В. Спинном мозге
5. Нейроны, проводящие импульсы от ЦНС к рабочим органам, называются:
A. Чувствительные Б. Вставочные B. Двигательные
6. Скопление тел нейронов за пределами ЦНС называется:
А. Нервные узлы Б. Нервы В. Рецепторы
7. Часть нервной системы, иннервирующая скелетные мышцы и кожу, называется:
А. Автономная Б. Соматическая В. Центральная
8. Часть нервной системы, иннервирующая внутренние органы, называется:
А. Вегетативная Б. Соматическая В. Центральная

Физиологические основы поддержания равновесия

Причиной головокружения в большинстве случаев служит нарушение согласованной деятельности различных сенсорных систем – вестибулярной, зрительной, проприоцептивной (информация о положении тела в пространстве, получаемая от рецепторов, расположенных главным образом в мышцах и сухожилиях). Кроме того, важной, а иногда и доминирующей причиной возникновения головокружения является дисфункция центральных структур, участвующих в поддержании равновесия тела, главным образом, ядер мозжечка.

Читайте так же:
Установка аварийной сигнализации на газ

Вестибулярная система

Вестибулярная система состоит из:

  • лабиринта,
  • вестибулярной части преддверно-улиткового нерва,
  • вестибулярных ядер в стволе головного мозга, а также их связей с другими отделами ЦНС (центральной нервной системы).

Правильная работа вестибулярной системы позволяет человеку четко ориентироваться в трехмерном пространстве, а именно:

  • воспринимать положение тела относительно вектора силы тяжести (статический компонент);
  • ощущать направление и скорость движения тела при его угловых и линейных перемещениях (динамический компонент).

Лабиринт располагается в каменистой части височной кости и включает:

  • отолитовый аппарат, который представлен двумя сообщающимися камерами (саккулус и утрикулус);
  • системой трех полукружных каналов, располагающихся во взаимоперпендикулярных плоскостях.

Строение лабиринта

Строение лабиринта

В каждой камере отолитового аппарата и в каждом полукружном канале имеется скопление рецепторных клеток – макула, которая покрыта желатинообразной массой – купулой. В отолитовом аппарате купула покрывает волосковые клетки наподобие подушки и содержит отложения кристаллов кальцита (отолиты), которые придают купуле дополнительный вес.

Отолитовый аппарат

Отолитовый аппарат

В полукружных каналах желатинообразная масса не содержит отолитов и полностью перекрывает просвет канала.

Рецепторы вестибулярной системы представлены волосковыми клетками, которые несут на апикальной поверхности от 60 до 80 тонких выростов цитоплазмы (стереоцилий) и одну ресничку (киноцилию).

Восприятие положения тела относительно силы гравитации

При вертикальном положении головы макула утрикулуса располагается горизонтально. Когда голова наклоняется в сторону, утяжеленная отолитами желатинообразная мембрана под действием силы тяжести соскальзывает в сторону наклона. Это скольжение приводит к изгибанию стереоцилей волосковых клеток. Наклон стереоцилей сопровождается (в зависимости от направления) повышением или снижением частоты нервных импульсов в чувствительных нейронах вестибулярного ганглия. Макула саккулуса располагается вертикально и действует таким же образом.

Восприятие положения тела относительно силы гравитации

Восприятие положения тела относительно силы гравитации

Восприятие линейных ускорений

При резком линейном ускорении тела купула саккулуса или утрикулуса за счет сил инерции смещается в направлении, противоположном направлению движения, что также приводит к изменению электрической активности рецепторов.

Восприятие углового ускорения

Три полукружных канала расположены в трех разных плоскостях. Каждый из трех каналов действует как замкнутая трубка, заполненная лимфой. В расширенной части канала его внутренняя стенка выстлана волосковыми клетками, а расположенная над ними купула полностью перекрывает просвет канала. При повороте головы полукружные каналы поворачиваются вместе с ней, а эндолимфа в силу своей инерции в первый момент остается на месте. В результате этого возникает разность давлений по обе сторону купулы, и она прогибается в направлении, противоположном движению. Это вызывает деформацию стереоцилий и последующее изменение активности нейронов.

Восприятие углового ускорения

Восприятие углового ускорения

При вращении головы только в горизонтальной, сагитальной или фронтальной плоскости активируются рецепторы одного из соответствующих каналов. При сложном вращении головы активируются рецепторы всех трех каналов. Информация от них поступает в головной мозг и на основе ее конвергенции и анализа модулируется истинная картина перемещения головы.

Читайте так же:
Газель бизнес регулировка холостого хода
Центральный отдел вестибулярной системы

Аксоны чувствительных нейронов, тела которых располагаются в вестибулярном ганглии, следуют в продолговатый мозг и оканчиваются в четырех парных вестибулярных ядрах. Приходящие в эти ядра импульсы от рецепторов дают точную информацию о положении в пространстве исключительно головы (но не всего тела!), поскольку она может быть наклонена или повернута относительно туловища. Для восприятия положения тела в пространстве необходим также учет угла наклона и поворота головы относительно туловища, поэтому вестибулярные ядра получают дополнительные стимулы от проприорецепторов мышц шеи.

Ядра вестибулярного нерва и их связи

Ядра вестибулярного нерва и их связи

Далее от вестибулярных ядер афферентная импульсация направляется к нейронам специфических ядер таламуса, а отростки последних достигают постцентральной извилины коры больших полушарий головного мозга

Проприоцептивная система

Благодаря проприоцепции, мы ощущаем положение конечностей, движение и степень мышечного напряжения в них. Это дает человеку чувство “опоры”, т.е. осознание, что стопы опираются на какую-либо поверхность, удерживая вес тела. Рецепторный аппарат проприоцептивной чувствительности, расположен в мышцах, сухожилиях, фасциях, капсулах суставов, а также в коже.

Необходимо отметить, что важную роль в поддержании равновесия тела играют рецепторы глубокой чувствительности, расположенные не только в конечностях, но и в структурах шеи, главным образом, в глубоких мышцах. Информация, получаемая головным мозгом от этих рецепторов, необходима для пространственной ориентации человека, поддержании его позы, а также координинации движения головы и туловища.

Зрительная система

Эффективное поддержание равновесия требует четкого контроля со стороны зрительной системы (в соответствие с принципом обратной связи). При этом контроль над движениями мышц глазного яблока является чрезвычайно сложным процессом. Существует 3 основных системы контроля взора:

  1. Система саккадических движений глазных яблок;
  2. Система плавных (следящих) движений глазных яблок;
  3. Вестибуло-окулярная система.

В пределах головного мозга эти системы контролируются определенными анатомическими зонами, которые являются в значительной степени изолированными, и обеспечивают две главные функции:

  1. зафиксировать предмет рассматривания в периферии визуальной области, поворачивая к нему глаза;
  2. удержать изображение предмета рассматривания устойчивым на ямке сетчатки.
Система саккадических движений глазных яблок

Когда объект интереса появляется в периферии визуальной области, происходит быстрый поворот глазных яблок в его сторону, так, что изображение объекта проецируется на сетчатку в области желтого пятна. Тот же самый двигательный ответ глазных яблок может быть вызван внезапным звуком или болезненным стимулом. Такое быстрое движение глаз называется саккадическим, от французского слова, означающего резкое движение парусника при ветре или дергание головы лошади от потягивания узды. В целом, система саккадических движений глазных яблок обеспечивает обнаружение зрительной цели и выведение ее на наиболее чувствительную часть сетчатой оболочки. Саккады возникают, например, в процессе чтения, при этом глаза человека обычно совершают несколько саккадических движений на каждой строке. Кроме того, они появляются, когда человек рассматривает какой-либо объект (картину, скульптуру и пр.), но в этом случае саккады совершаются в разных направлениях (вверх, вниз, в стороны и под углом) последовательно от одной точки объекта к другой.

Читайте так же:
Установка бесконтактной системы зажигания газ

Классическое изображение, описывающее саккадические движение глазных яблок при рассматривании объекта

Классическое изображение, описывающее саккадические движение глазных яблок
при рассматривании объекта

Система плавных (следящих) движений глазных яблок

Когда объект рассматривания перемещается, саккадическая система может первоначально зафиксировать его, но скоро теряет, поскольку изображение ускользает из области желтого пятна (сетчатое скольжение). Плавные (следящие) движения глаз необходимы для длительной фиксации движущегося объекта и слежения за ним. После того как визуальная цель выбрана, система работает вне волевого контроля.

Схематическое изображение функционирования системы плавных (следящих) движений глаз.

Схематическое изображение функционирования системы
плавных (следящих) движений глаз

Вестибуло-окулярная система

В то время как система следящих движений глазных яблок фиксирует изображение перемещающегося объекта рассматривания на желтом пятне, существует другая система, которая позволяет стабилизировать изображение неподвижного объекта рассматривания на сетчатке во время движения головы. Это основная функция вестибуло-окулярной системы. Благодаря ее наличию у человека во время движения на транспорте по неровной дороге или ходьбе не возникает проблем с четким рассматриванием отдаленного объекта. В том случае, когда по какой-либо причине вестибуло-окулярная система не работает возникает феномен, называющийся “осциллопсия” – “дергание” визуальной картинки при движении.

Мозжечок

Основная функция мозжечка заключается в получении информации о положении тела в пространстве от всех органов чувств и регуляции на ее основе мышечного тонуса и движений для поддержания равновесия и выполнения точных действий.

Для больных с повреждением мозжечка характерна астазия-абазия – нарушение способности к сохранению равновесия тела при стоянии и ходьбе. Больные ходят, широко расставив ноги – так называемая туловищная атаксия (“пьяная походка”).

Ходьба на пятках и носках невозможна. Атаксия в данном случае развивается вследствие неспособности головного мозга координировать деятельность мышц в процессе преодоления силы тяжести. Также выявляются глазодвигательные расстройства. Они проявляются нарушением фиксации взора на неподвижных или двигающихся объектах, в результате чего возникают рывковые движения глаз при слежении. Также характерен вертикальный нистагм, бьющий вверх или вниз.

Соматоформная дисфункция

При соматоформной дисфункции человек, как правило, жалуется на конкретный орган или группу органов, которые регулирует вегетативная нервная система. Это могут быть жалобы на сердечно-сосудистую, желудочно-кишечную, дыхательную или мочеполовую системы. Пациент связывает свое состояние с физическим расстройством, однако по результатам обследования врач не находит причин такового. Истинной причиной недомогания является нарушение работы вегетативных нервных центров. Помимо субъективных локализованных болей, тяжести, жжения или напряжения, среди жалоб пациента можно легко выявить специфические симптомы ВСД.

Читайте так же:
Контроллер системы автоматического управления климатической установкой приора

Определения

Иннервация (от in — в, внутри и nervus — нервы) — снабжение органов и тканей нервами, что обеспечивает их связь с центральной нервной системой (ЦНС).

Иннервация скелетной мышцы — это наличие нервных волокон, которые передают импульсы из ЦНС к мышце и от мышцы в ЦНС.

Денервация скелетной мышцы — нарушение передачи импульсов из ЦНС к мышце или от мышцы в ЦНС. Денервация мышечных волокон возможна из-за перерезки или повреждения нерва. Денервация мышечных волокон происходит также по мере старения из-за уменьшения количества нервных волокон, иннервирующих скелетную мышцу.

Теперь рассмотрим этот вопрос подробнее. Давайте сначала разберемся, что представляет собой нейрон.

Нейрон

Нейрон – это структурная единица нашей нервной системы, главная функция которого – передача информации от одного участка тела другому. Чтобы передать информацию нейрон возбуждается, затем вырабатывает нервный импульс. Нейроны также участвуют в обработке и хранении информации. Но этого вопроса мы касаться не будем.

Иннервация скелетной мышцы

Нейрон – это высокоспециализированная клетка. Он состоит из тела и длинного отростка – аксона (рис. 1.).

Длина аксона может достигать одного метра и более. На теле есть много мелких отростков – дендритов. Через эти отростки нейрон получает информацию от других нейронов и передает ее через аксон или другому нейрону, или органу, к которому он подходит (в нашем случае – мышце).

Периферический нерв

Скелетные мышцы иннервируются одним или несколькими периферическими нервами. За несколькими исключениями (лицевой и подъязычный нерв) все периферические нервы являются смешанными. Смешанный периферический нерв в своем составе содержит:

  • двигательные волокна (нейроны);
  • чувствительные волокна (нейроны);
  • вегетативные волокна (нейроны).

Когда мы рассматривали строение скелетной мышцы, то указывалось, что периферические нервы имеют каналы в перимизии. Через эти каналы периферические нервы подходят к мышечным волокнам.

Двигательные волокна (нейроны)

Двигательные нейроны (мотонейроны) несут информацию от ЦНС к мышце. Тела мотонейронов расположены в передних рогах спинного мозга. Аксоны мотонейронов идут к мышцам в составе периферического нерва.

Двигательные нейроны делятся на два типа: α-мотонейроны (альфа-мотонейроны) и γ-мотонейроны (гамма-мотонейроны).

  • α-мотонейроны иннервируют мышечные волокна. Через α-мотонейроны к мышечному волокну поступают импульсы из центральной нервной системы (ЦНС) в результате которых мышечное волокно развивает возбуждение (сокращается).
  • γ-мотонейроны иннервируют мышечные веретена (рецепторы мышц). Эти мотонейроны иннервируют особые мышечные волокна (интрафузальные), расположенные внутри мышечных веретен. Напряжение и расслабление интрафузальных волокон изменяет чувствительность рецептора — мышечного веретена. Благодаря этому происходит более «тонкое» управление движениями. За открытие этого механизма шведский нейрофизиолог Рагнар Гранит был удостоен Нобелевской премии.
Читайте так же:
Регулировка приклада benelli raffaello

Один α-мотонейрон иннервирует (то есть пускает веточки) достаточно много мышечных волокон. Иногда на один аксон приходится более 2000 мышечных волокон. Такая система, состоящая из одного нейрона и мышечных волокон, которые он иннервирует, называется двигательной единицей (ДЕ). Это понятие ввел в физиологию нобелевский лауреат Чарльз Скотт Шеррингтон в начале XX века. Особенности состава и функционирования ДЕ мы рассмотрим позднее.

Место, где аксон α-мотонейрона соединяется с мышечным волокном называется концевой пластинкой (синапсом). Через синапс к мышечному волокну из ЦНС (центральной нервной системы) поступают сигналы, которые вызывают его возбуждение.

Чувствительные волокна (нейроны)

Чувствительные волокна несут в ЦНС информацию о различных показателях активности мышцы (длине мышцы, скорости ее сокращения, степени напряжения). Если бы ЦНС не могла получать эту информацию, управление напряжением мышцы было бы невозможно. Точно так же было бы невозможно управление нашими движениями. Тела чувствительных нейронов расположены в задних рогах спинного мозга.

Чувствительные нейроны либо заканчиваются свободными нервными окончаниями, либо иннервируют рецепторы скелетных мышц (мышечные веретена и рецепторы сухожилий).

  • Свободные нервные окончания называются ноцицепторами. Они расположены между мышечными волокнами и несут в ЦНС информацию о боли.
  • От мышечных веретен отходят чувствительные нейроны (Ia-афференты), несущие в ЦНС информацию о длине и скорости сокращения скелетной мышцы.
  • От сухожильных рецепторов отходят чувствительные нейроны (Ib-афференты), несущие в ЦНС информацию о напряжении скелетной мышцы.

Вегетативные волокна (нейроны)

Вегетативные нейроны иннервируют гладкие мышцы стенок кровеносных сосудов скелетных мышц.

Влияние старения на иннервацию скелетных мышц

Иннервация скелетных мышц пожилых людей ухудшается. Ученые находят, что с возрастом уменьшается количество α-мотонейронов, иннервирующих скелетную мышцу. Это является одним из факторов, обусловливающих возрастное уменьшение массы скелетных мышц и их силы — саркопению.

Название мышц человека

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector