Mskstart.ru

Все про Авто перевозки
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Организации и предприятия России: Спутниковая навигация GPS, ГЛОНАСС

Химки, Московская область

ООО «ТрекДжиПиЭс» (группа компаний ""Рэйс"") входит в число лидеров российского рынка систем мобильного позиционирования и мониторинга транспорта. В этой сфере группа компаний .

Адрес: 141407 , Химки , Юбилейный пр-т, д.7
Телефон / факс: +7 (495) 668-13-47
Сайт: www.trackgps.ru

  • 1

на 1 декабря 2021

USD ЦБ74.89-0,09
EUR ЦБ84.82+0,34

© REGTORG.RU, 2010-2021 | Пользовательское соглашение |

Описание GPS

Принцип работы GPS

Работает система GPS следующим образом – приемник сигнала измеряет задержку распространения сигнала от спутника до приемника. Из полученного сигнала приемник получает данные о местонахождении спутника. Для определения расстояния от спутника до приемника задержка сигнала умножается на скорость света.

Arduino GPS

С точки зрения геометрии работу навигационной системы можно проиллюстрировать так: несколько сфер, в середине которых находятся спутники, пересекаются и в них находится пользователь. Радиус каждой из сфер соответственно равен расстоянию до этого видимого спутника. Сигналы от трех спутников позволяют получить данные о широте и долготе, четвертый спутник дает информацию о высоте объекта над поверхностью. Полученные значения можно свести в систему уравнений, из которых можно найти координату пользователя. Таким образом, для получения точного местоположения необходимо провести 4 измерения дальностей до спутника (если исключить неправдоподобные результаты, достаточно трех измерений).

Система спутниковой навигации GPS - принцип, схема, применение

Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.

Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.

Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.

Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.

Все источники ошибок можно разделить на несколько групп:

  • Погрешность в вычислении орбит;
  • Ошибки, связанные с приемником;
  • Ошибки, связанные с многократным отражением сигнала от препятствий;
  • Ионосфера, тропосферные задержки сигнала;
  • Геометрия расположения спутников.

Основные характеристики

В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.

Характеристики навигационных систем GPS:

  • Количество спутников – 26, 21 основной, 5 запасных;
  • Количество орбитальных плоскостей – 6;
  • Высота орбиты – 20000 км;
  • Срок эксплуатации спутников – 7,5 лет;
  • Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;
  • Надежность навигационного определения – 95%.

Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

  • Количество каналов – в современных приемников используется от 12 до 20 каналов;
  • Тип антенны;
  • Наличие картографической поддержки;
  • Тип дисплея;
  • Дополнительные функции;
  • Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.

Холодный, теплый и горячий старт GPS навигатора

Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.

Читайте так же:
Установка системы автоматического регулирования теплоснабжения

Чтобы начать свою работу, навигатор должен:

  • Найти спутник и установить с ним связь;
  • Получить альманах и сохранить его в памяти;
  • Получить эфемериды от спутника и сохранить их;
  • Найти еще три спутника и установить с ними связь, получить от них эфемериды;
  • Вычислить координаты при помощи эфемерид и местоположения спутников.

Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом.

Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.

Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.

Ограничения на покупку и использование самодельных модулей GPS

Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.

Система спутниковой навигации GPS - принцип, схема, применение

Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.

Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.

Спутниковые технологии посадки – основа безопасности полетов вертолетов

Радионавигационное обеспечение полетов – одно из основных направлений решения задач повышения безопасности полетов (БП) воздушных судов (ВС). Использование инструментальных средств посадки позволяет существенно снизить метеоминимум и в десятки раз уменьшить вероятность авиационных происшествий на самом аварийно-опасном этапе полета – заходе на посадку, где происходит до 70% всех происшествий.

Со второй половины прошлого века основным средством обеспечения заходов на посадку являются системы метрового диапазона радиоволн типа ILS, которые установлены на многих крупных аэродромах. А в это же время значительная часть ВС эксплуатируется на аэродромах и посадочных площадках, оснащение которых системами типа ILS не планируется как по техническим (нет места для размещения), так и по экономическим (высокая стоимость) причинам.

Единственной реальной альтернативой для эффективного и оперативного решения проблемы повышения БП является обеспечение их инструментальными системами спутниковой посадки, получившими в международной практике обозначение GLS – Global Landing System. Использование других инструментальных систем (микроволновые системы посадки – MLS, посадочные радиолокаторы – ПРЛ, многодальномерные системы, оптические, телевизионные, инфракрасные системы и т.д.) имеет существенные ограничения либо по эксплуатационно-техническим параметрам, либо по стоимости.

Внедрение GLS для повышения БП ВС обусловлено следующими обстоятельствами:

  • в авиации накоплен значительный положительный опыт практического использования глобальных навигационных спутниковых систем (ГНСС): американской GPS и российской ГЛОНАСС;
  • международная организация гражданской авиации (ИКАО) рассматривает ГНСС как стандартное радионавигационное средство для решения конкретных задач самолетовождения; при управлении воздушным движением с использованием режима автоматического зависимого наблюдения (АЗН-В).
  • разработана концепция функциональных дополнений ГНСС наземного (GBAS) и космического (SBAS) базирования, использование которых позволяет перевести ГНСС в ранг основного средства для обеспечения навигации в зоне аэропорта: при «неточном» (NPA) и точном заходе на посадку; при наземной навигации в аэропорту;
  • разработаны и прошли апробацию стандарты для сертификации GLS с использованием GBAS и SBAS;
  • в России действует Федеральная целевая программа «Поддержание, развитие и использование системы ГЛОНАСС в 2012-2020 годах», целью которой является массовое внедрение отечественных навигационных технологий и гарантированное предоставление потребителям навигационных услуг.
Читайте так же:
Установка автомобильной сигнализации самостоятельная

Крупнейшие авиапроизводители (Boeing, Airbus, Embraer, Sikorsky, Миль и др.) оснащают свои воздушные суда оборудованием, обеспечивающим инструментальный заход на посадку с использованием GLS.

К концу 2012 года более чем в 100 аэропортах мира и более чем в 50 аэропортах России размещены наземные системы функционального дополнения ГНСС для поддержки инструментальных заходов на посадку в соответствии с требованиями 1 категории ИКАО.

В России ЛККС в настоящее время изготавливает и устанавливает компания «НППФ «Спектр» (Москва). Производимые именно этой компанией наземные станции GBAS типа ЛККС-А-2000 эффективно функционируют в 50 аэропортах России. Бортовое сертифицированное оборудование GLS (АПДД и БМС-Индикатор) производит компания «ВНИИРА-Навигатор» (Санкт-Петербург). Производимая аппаратура в полном объеме выполняет функции по поддержанию операций по I категории посадки.

Общая идеология построения GLS основана на использовании концепции дифференциальных подсистем и заключается в следующем: в точке расположения приемных антенн ЛККС, координаты которых в геодезической системе координат WGS-84 определены с высокой точностью, осуществляется прием и обработка сигналов ГНСС и формирование корректирующей информации. Затем полученная информация по каналу связи «земля-борт» передается в бортовое оборудование GLS, где используется для исключения ошибок измерений. В настоящее время погрешность определения координат ВС в бортовом оборудовании GLS не превышает 1 м с вероятностью 0.95.

Ввиду того, что GLS предназначена для обеспечения посадки по I категории ИКАО, а в дальнейшем и для более высоких категорий, то при построении радиоканала передачи дифференциальных данных «земля-борт» большое внимание уделяется вопросам помехозащищенности и помехоустойчивости этого канала.

Построение наземной подсистемы GLS (ЛККС) зависит от множества разнообразных факторов, определяемых как характеристиками места ее размещения, так и прогнозируемым режимом ее использования. Но, в любом случае, в составе ЛККС будет присутствовать модуль опорных приемников и передатчик VDB (высокочастотный цифровой передатчик). Передатчик VDB обеспечивает получение данных и поправок к дальномерным сигналам ГНСС посредством передачи цифровых данных в диапазоне частот 108…118 МГц с разделением каналов в 25 кГц. Область действия простирается на расстояние не менее 37 км от места расположения передатчика.

В общем случае структура бортового оборудования GLS зависит от структуры бортового комплекса ВС. Например, в качестве антенны бортового оборудования GLS может использоваться курсовая антенна системы инструментальной посадки ILS, а в качестве органов управления и индикации – пульт системы управления полетом ВС.

Основными функциями бортового оборудования GLS являются: прием сигналов ГНСС, прием и обработка сообщений ЛККС, выбор траектории захода на посадку (FAS), формирование параметров для точного наведения («ILS-подобных» сигналов), определение района точного захода на посадку (PAR), формирование навигационных параметров (координаты, скорости и время) и сигналов тревоги.

Основными преимуществами отечественных GLS являются:

  1. Работа по двум навигационным спутниковым группировкам (ГЛОНАСС и GPS), что существенно повышает непрерывность обслуживания, эксплуатационную готовность, доступность и целостность.
  2. Обслуживание точного захода на посадку со всех торцов на любых взлетно-посадочных полосах (ВПП), находящихся в зоне действия станции. Применение ILS требует установки отдельного комплекта аппаратуры для каждого торца ВПП.
  3. Точность навигационного обслуживания в GLS не зависит от удаления ВС от ВПП и от станции в пределах установленной зоны для процедур посадки. В случае применения ILS точность навигационного обслуживания существенно зависит от удаления ВС от ВПП.
  4. Траектория конечного участка захода на посадку (FAS), передаваемая на борт ВС по каналу VDB, не может быть искажена никакими внешними воздействиями, т.к. представляет собой набор коэффициентов, используемый для построения виртуальной пространственной линии, относительно которой бортовая подсистема осуществляет наведение. В системе ILS посадочная глиссада может быть искажена внешними воздействиями, влияющими на распространение радиоволн.
  5. GLS обеспечивает навигационное обслуживание всех ВС, находящихся в ее зоне действия. Подходит для посадочных и маршрутных процедур, в том числе полет по маршрутам RNAV, P-RNAV, стандартным траекториям прибытия (SID) и вылета (STAR), начальный и промежуточный участки траектории захода на посадку, послепосадочный пробег, разбег, взлет и уход на второй круг, а также для навигации на аэродроме.
    ILS, в свою очередь, обеспечивает обслуживание исключительно посадочных процедур.
  6. Применение GLS не требует размещения ЛККС на осевой линии ВПП или вблизи ВПП, что исключает влияние впереди идущего ВС на прием посадочных данных сзади идущим ВС и снижает требования к пространственному разделению ВС при посадке по сравнению с ILS.
  7. Экономическими преимуществами GLS являются отсутствие зависимости от подстилающей поверхности и соответствующих периодических сезонных работ, стоимость аппаратуры, затраты на размещение.
Читайте так же:
Установка сигнализации с обратной связью на автомобиль

Расходы на испытания и обслуживание GLS при вводе в эксплуатацию в несколько раз ниже, чем для ILS.

Высокая точность спутниковой навигации с применением данных GLS обеспечивает возможность сокращения протяженности линии пути и полетного времени (сокращение расхода топлива), снижение минимумов эшелонирования при реализации полетов по схемам SID, STAR, P-RNAV, RNP RNAV.

ris-bez.jpg

На рисунке 1 представлен БМС-Индикатор, который в бортовой подсистеме GLS выполняет функции навигации, определения местоположения и управления, а на рисунке 2 изображена аппаратура приема и преобразования дифференциальных данных (АПДД), которая, по сути, является бортовым приемником VDB.

АПДД и БМС, входящие в состав системы посадки, успешно показали себя в различных испытаниях. C помощью БМС в 2007 году осуществлен полет в Антарктиду по маршруту: Санкт-Петербург – Найроби – Кейптаун – Новолазаревская. На борту проводилась оценка автоматического самолетовождения при полетах в условиях зональной навигации RNP-5 Европейского региона и Южной Африки. БМС не только обеспечивал уверенный прием и сопровождение сигналов спутников системы ГЛОНАСС и GPS на протяжении всего полета, но и продемонстрировал в высоких широтах преимущество российской системы ГЛОНАСС над американской системой GPS.

В рамках этого же полета был получен еще один впечатляющий результат во время проверки режима некатегорированного захода на посадку. При отсутствии наземной информационной поддержки (ЛККС) расчетная траектория БМС до высоты 100 м полностью соответствовала показаниям индикатора системы инструментальной посадки (ILS).

Посадка в Антарктиде и последующая успешная подконтрольная эксплуатация системы совместно с ЛККС в течение всего периода навигации является доказательством не только отличной работоспособности, но и показателем востребованности данного типа аппаратуры особенно на необорудованных аэродромах и в сложных метеоусловиях. Полеты, выполненные профессионалами из ГосНИИ ГА, полностью подтвердили высокую точность определения навигационных координат системой.

После прохождения летных проверочных полетов на самолетах Як-42 и эксплуатации в Антарктиде на Ил-76 аппаратура превосходно показала себя на испытаниях в ЗАО «АК Авиашельф» (а/п Ноглики) на вертолете Ми-8МТВ1. Специалисты МВЗ М.Л.Миля и ведущие сотрудники ГОСНИИ АН и ГОСНИИ АС, участвующие в испытаниях, подтвердили отличную работу и уникальность системы.

Кроме крайней необходимости в функции категорированной посадки перед авиакомпаниями стоит не менее важная задача – снижение метеоминимума. В таких районах, как Штокманское месторождение, где большую часть суток преобладает морской туман, на крайнем севере, где полярная ночь длится полгода, решение этой задачи является жизненно необходимым. Снижение метеоминимума автоматически влечет за собой уменьшение расхода топлива и повышение безопасности полетов, что, безусловно, является ключевой задачей.

Крупный разработчик навигационно-посадочной аппаратуры и средств управления полетом, компания ВНИИРА-Навигатор, на текущий момент проводит сертификацию бортового оборудования GLS (ССП-1), которое является модернизацией изделия АПДД. По внешнему виду ССП-1 полностью соответствует изделию АПДД, однако в отличие от последнего, способно в полном объеме выполнять функции бортового оборудования GLS. Достигается путем встраивания в изделие АПДД приемника ГНСС (GPS/ГЛОНАСС).

Заключение

В настоящее время использование систем спутниковой посадки GLS является практически единственным способом повышения безопасности вертолетовождения. Ведущие производители авиационной техники включают системы GLS в перспективные навигационно-посадочные комплексы ВС.

В России активно поддерживают мировой тренд использования систем GLS для оборудования аэродромов и воздушных судов. В настоящее время можно с гордостью заявить, что в России серийно производится все необходимое оборудование GLS для оснащения аэродромов, посадочных площадок и вертолетов.

bez1.jpg

Вертолет МИ8-МТВ1. (Фото Олега Чаплина).

bez2.jpg

Заход на посадку по ССП.

С.В. Бабуров, О.И. Саута, Е.Б. Купчинский.

Журнал Крылья родины. Номер 7-8.

Сотрудники фирмы ЗАО "ВНИИРА-Навигатор" более полувека занимаются созданием бортового оборудования для всех типов воздушных судов. Это системы навигации, посадки и безопасности полетов.

В настоящее время одной из ключевых проблем, сдерживающих дальнейший рост объемов международных авиаперевозок, является проблема управления воздушным движением — ATM (Air Traffic Management). В то же время, развитие ATM невозможно без решения проблем связи, навигации и наблюдения – CNS (Сommunication, Navigation, Surveillance).

Читайте так же:
Системы охлаждения лазерных установок

Как пользоваться навигатором в автомобиле

Нужно найти место для установки устройства. Обычно для этого используется крепление, которое фиксирует прибор на лобовом стекле. Должно соблюдаться главное условие: он не должен мешать во время движения.

Соблюдайте инструкции для правильной установки оборудования:

Навигационное устройство

  1. Место, куда будет он установлен, необходимо очистить от пыли и загрязнений.
  2. Правильно настройте угол наклона, чтобы хорошо видеть отображаемую на экране информацию.
  3. Свободно висящих проводов не должно быть, иначе они могут попасть под руку.

Не устанавливайте навигационное устройство на место расположения подушки безопасности!

Глобальная навигационная спутниковая система

ГНСС относится к группе спутников, которые ретранслируют сигналы из космоса для передачи данных о местоположении и времени на приемники ГНСС. Спутниковые навигационные системы различных стран функционируют в рамках ГНСС. В настоящее время, GPS стал настолько популярным, что люди ошибочно принимают каждую спутниковую систему за GPS.

Как работает спутниковая связь

Перечень спутниковых навигационных систем различных стран мира

  • Система глобального позиционирования, широко известная как GPS, является спутниковой навигационной системой США. GPS функционирует с 1978 года и предоставляет пользователям услуги позиционирования, навигации и синхронизации. Он состоит из трех сегментов, а именно: космического сегмента, управляющего сегмента и пользовательского сегмента.
  • Индийская региональная спутниковая система (IRNSS), широко известная как NavIc, является независимой региональной навигационной спутниковой системой. Она предназначена, главным образом, для индийских пользователей и предоставляет им точные информационные услуги о местоположении. Она также обслуживает тех, кто находится в радиусе 1500 км от Индийского субконтинента. Систеёма начала функционировать 1 июля 2013 года.
  • Квазизенитная спутниковая система (QZSS) — это японская спутниковая система, состоящая, в основном, из спутников на квазизенитных орбитах (QZO). Часто называемая «японской GPS», QZSS появилась на свет 1 ноября 2018 г.
  • Galileo — это спутниковая система Европейского Союза, впервые запущенная в 2011 г. Она обеспечивает точную информацию о времени и местоположении для европейских служб и пользователей.
  • BeiDou — это китайская спутниковая система, первый запуск которой состоялся 30 октября 2000 г.
  • ГЛОНАСС (глобальная спутниковая система) впервые была запущена 12 октября 1982 г и принадлежит России.

все спутниковые системы мира

Другие системы спутниковой навигации

Помимо BeiDou, есть еще несколько спутниковых навигационных систем, которые в настоящее время находятся в стадии строительства или уже работают. Наиболее известной из этих систем является Galileo. Galileo Европейского Союза — это многомиллиардный проект, который был инициирован с целью обеспечения высокоточной и независимой системы позиционирования для европейских стран с учетом геополитических факторов. Все созвездие Галилео состоит из 26 спутников с шестью дальнейшими развертываниями в течение следующего десятилетия.

Еще одной автономной навигационной системой, состоящей из группировки из четырех спутников (планируется разместить еще три спутника), является IRNSS (сокращение от Индийской региональной навигационной системы) или NAVIC. НАВИК самостоятельно разрабатывается и обслуживается Индийской организацией космических исследований.

По-видимому, IRNSS обеспечивает точность позиционирования 10 м (открытый сервис) и 10 см (ограниченный сервис). В отличие от GPS, ГЛОНАСС и Galileo, индийская навигационная система не имеет непосредственных планов предоставлять глобальные услуги.

Анимация, изображающая спутниковую орбиту QZSS. Изображение предоставлено Hiroshi FUKUDA

Далее следует японская спутниковая система «Квазизенит» или QZSS. Это спутниковая система дополнения, совместимая с GPS, которая в основном повысит точность и надежность GPS над Японией и ее окрестностями. В настоящее время система QZSS состоит из четырех спутников, но к 2023 году она будет постепенно расширена до семи (по оценкам).

Три из четырех его спутников расположены на сильно наклоненных геосинхронных орбитах, на расстоянии около 120° друг от друга. Этот высокий наклон позволяет им вращаться по орбите по уникальной асимметричной схеме, известной как аналеммы, и постоянно присутствовать над Японией. Сигналы, передаваемые спутниками QZSS, идентичны старым и модернизированным сигналам GPS (L1C / A, L1C, L2C), что облегчает сотрудничество с американской навигационной сетью.

Методы передачи поправок от базовой станции

1. Радиоканал в УКВ диапазоне

Передача поправок производится через радиоканал в диапазоне 410-470 МГц (для большинства устройств). Встроенные в базовые приёмники радиомодемы имеют мощность до 4-5 Вт и комплектуются компактными (до 30 см) антеннами для работы на небольших расстояниях. Для увеличения дальности работы применяют внешние радиомодемы мощностью до 35-40 Вт с отдельным питанием и бо́льшими по размеру антеннами (до нескольких метров), как правило на отдельном основании.

Читайте так же:
Винты для регулировки тнвд д 245

— при работе в дали от населённых пунктов с покрытием сотовой связи, является единственно-возможным вариантом работы;

— нет необходимости в сторонних организациях.

— радиус действия ограничен дальностью которую может обеспечить радиомодем с учётом места его установки и особенностей местности;

— возможен конфликт сообщений при работе с более чем одной станцией на одном канале.

Внимание – использование УКВ модема с мощностью более 10 мВт для диапазона 433 МГц должно быть лицензировано в ГКРВ. Рекомендуется не использовать их близко к городам, т.к. это может создать помехи для другой техники, работающей на тех же частотах, и возможна не стабильная передача поправок на ровер.

Ссылки на оборудование:

При работе через УКВ можно обойтись без одноплатного компьютера, и собрать базовую станцию из ГНСС-приемника, посылающего поправки напрямую через УКВ.

2. Сотовые сети CSD

CSD (Circuit Switched Data в переводе с англ. — «Данные с Коммутацией Каналов»). Передача поправок с базовой станции производится напрямую, посредством «дозвона» ровера на номер сим-карты установленной в GMS терминале этой базы. До 2010 года метод пользовался популярностью, но после 2010 сотовые операторы постепенно начали прекращать поддержку данного сервиса, оставляя его на одном из тарифов для IoT-устройств.

— большой радиус действия (ограничен покрытием сети);

— относительная простота настройки оборудования — требуется ввести телефонный номер базы.

— на 2020 год необходимость заключать дополнительный договор с оператором сотовой связи или переходить на тариф с поддержкой данного сервиса;

— в отличие от других вариантов, работа с базой одномоментно возможна только с одного ровера.

3. Сотовые сети c использованием Интернет (3G, LTE)

3.1 NTRIP

NTRIP (Networked Transport of RTCM via Internet Protocol в переводе с англ. — «Сетевой транспорт RTCM по интернет-протоколу»). Представлен в сентябре 2004 Немецким агентством картографии и геодезии (German Federal Agency for Cartography and Geodesy (BKG)) и Дортмундским Университетом Компьютерных Технологий (Dortmund University Department of Computer Science DUDCS). Передача поправок с базовой станции производится через компьютер с белым (статическим) IP-адресом, на котором установлено специальное ПО. Описание протокола определяет 4 базовых компонента системы:

    • Mountpoint (точка доступа или источник поправок) — сам приёмник, работающий в режиме база и генерирующий RTCM поправки;
    • NTRIP-server (сервер) — осуществляет доставку пакетов от источника до кастера. Для разграничения доступа используется комбинация точки доступа и пароля;
    • NTRIP-caster (кастер) — компонент системы отвечающий за коммутацию пакетов между базой и роверами. По сути это HTTP-сервер, поддерживающий некоторые HTTP-сообщения типа запрос/ответ, и настроенный для потоковой передачи данных с низкой пропускной способностью (от 50 до 500 байт/сек. на поток);
    • NTRIP-client (клиент) — осуществляет забор пакетов с поправками посредством запроса на IP-адрес:порт кастера c указанием точки точки доступа (mountpoint) имени пользователя и пароля.

    Существуют приёмники с интегрированной функциональностью кастера, которые могут обеспечить небольшое число роверов (обычно до 10-30). Как правило, устанавливаются стационарно, подключаясь к сети интернет через роутер с настройкой переадресации портов, на которых настроен кастер, и прямым IP адресом.

    Существуют интернет-сервисы, предоставляющие функционал кастера с интуитивно понятной настройкой. Для работы потребуется своя или «дружественная» база c GSM и свой ровер, и небольшая абонентская плата (сопоставимая со стоимостью интернет тарифа мобильного оператора).

    — радиус действия соответствует зоне покрытия интернет;

    — возможно построение разветвлённой сети с автоматическим выбором ближайшей базовой станции на основе текущих координат ровера;

    — существуют сети передачи поправок, покрывающие значительные территории и требующие для работы конечного пользователя только одного ГНСС-приёмника — ровера;

    — возможна передача сообщений RTCM 1021-1027 от сети поправок, позволяющих определить параметры местной системы координат конечному пользователю.

    ‑ присутствие, в отличие от CSD или радио, третьего компонента — кастер и 2х каналов передачи данных, что несколько снижает надёжность всей системы;

    — высокая сложность настройки полного собственного решения (caster+server+client), если приёмник не оснащён кастером.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector